

INFRARED TEMPERATURE SENSOR IRTS-PCB-V2

The Izze-Racing infrared sensor is specifically designed to measure the highly transient surface temperature of a tire with spatial fidelity, providing invaluable information for chassis tuning, tire exploitation, compound selection, and driver development.

The sensor is capable of measuring temperature at 16, 8, or 4 laterally-spaced points, at a sampling frequency of up to 100Hz, object temperature between -20 to 300°C, using CAN 2.0A protocol, and priced to be affordable to all tiers of motorsport. The sensor is available with two field-of-views: ultra-wide (120°) or wide (60°).

The sensor is now offered as a PCB assembly, without an enclosure, amounting to a significant reduction in cost and allowing the end user to package the sensor to their specific needs.

SENSOR SPECIFICATIONS

Temperature Measurement Range, T _o	-20 to 300°C		
Package Temperature Range, T _p	-20 to 85°C		
Accuracy (Central 10 Channels, Nominal) (16-Ch Sensor)	$\pm 1.0 ^{\circ}\text{C}$ for $0 ^{\circ}\text{C} < T_p < 50 ^{\circ}\text{C}$ $\pm 2.0 ^{\circ}\text{C}$ for $T_p < 0 ^{\circ}\text{C}$ and $T_p > 50 ^{\circ}\text{C}$		
Accuracy (First & Last 3 Channels, Nominal)	± 2.0 °C for 0°C < T _p < 50°C		
(16-Ch Sensor)	± 3.0 °C for T _p < 0°C and T _p > 50°C		
Noise Equivalent Temperature Difference, NETD	0.5° C at 16Hz, ϵ = 0.85, T_{o} = 25 $^{\circ}$ C		
Field of View, FOV	60°x 8° (wide) 120°x 15° (ultra-wide)		
Number of Channels	16, 8, or 4		
Sampling Frequency	100 ¹ , 64 ¹ , 32, 16, 8, 4, 2, or 1Hz		
Thermal Time Constant	2 ms		
Effective Emissivity	0.01 to 1.00 (default = 0.78)		
Spectral Range	8 to 14 μm		

1 - Optional Extra, 64Hz limit for IRTS-120-PCB-V2, 100Hz limit for IRTS-60-PCB-V2

ELECTRICAL SPECIFICATIONS

Supply Voltage, V_{in}
Supply Current, I_s (typ)
Features

5 to 8 V 30 mA

- Reverse polarity protection
- Over-temperature protection (125 $^{\circ}$ C)

INFRARED TEMPERATURE SENSOR IRTS-PCB-V2

MECHANICAL SPECIFICATIONS

Weight, 60°FOV	< 2 g
Weight, 120°FOV	< 2 g
L x W x H (max), 60°FOV	32.15 x 15 x 9.3 mm
L x W x H (max), 120°FOV	26.8 x 15 x 9.3 mm

CAN SPECIFICATIONS

Standard	CAN 2.0A (11-bit identifier), ISO-11898
Bit Rate (Default)	1 Mbit/s
Byte Order	Big-Endian / Motorola
Data Conversion	0.1°C per bit, -100°C offset, unsigned
	LF Sensor: 1200 (Dec) / 0x4B0 (Hex)
Base CAN ID's	RF Sensor: 1204 (Dec) / 0x4B4 (Hex)
(Default)	LR Sensor: 1208 (Dec) / 0x4B8 (Hex)
	RR Sensor: 1212 (Dec) / 0x4BC (Hex)
Termination	None

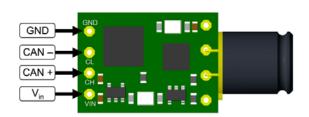
CAN ID: Base ID

Channel 1	Channel 1 Channel 2		Channel 3		Channel 4		
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+1

Channel 5 Channel 6		Channel 7		Channel 8			
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+2


Channel 9	Channel 10		Channel 11		Channel 12		
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

CAN ID: Base ID+3

Channel 13		Channel 14		Channel 15		Channel 16	
Byte 0 (MSB)	Byte 1 (LSB)	Byte 2 (MSB)	Byte 3 (LSB)	Byte 4 (MSB)	Byte 5 (LSB)	Byte 6 (MSB)	Byte 7 (LSB)

PCB PINOUT:

PCB Label	Description
GND	Ground
CL	CAN -
CH	CAN +
VIN	V _{in} (5–8V)

(Recommended Wire: 26 AWG M22759/32, DR25 jacket)

INFRARED TEMPERATURE SENSOR IRTS-PCB-V2

SENSOR CONFIGURATION:

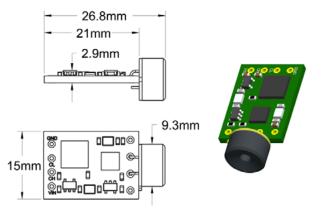
To modify the sensor's configuration, send the following CAN message at 1Hz for at least 10 seconds and then reset the sensor by disconnecting power for 5 seconds:

CAN ID: Current Base ID

Programming Constan	New CAN Bas	e ID (11-bit) Emissivit	y Sampling Frequer	ncy Channels	
Byte 0 (MSB) Byte 1	(LSB) Byte 2 (MSB)	Byte 3 (LSB) Byte 4	Byte 5	Byte 6	Byte 7
30000 = 0x7530	1 = 0x001 : 2047 = 0x7FF	1 = 0.01 : : 100 = 1.0	1 = 1Hz 5 = 1 2 = 2Hz 6 = 3 3 = 4Hz 7 = 6 4 = 8Hz 8 = 1	2Hz 80 = 8Ch 4Hz ¹ 160 = 16Ch	

^{1 -} Optional Extra, 64Hz limit for IRTS-120-PCB-V2, 100Hz limit for IRTS-60-PCB-V2

CAN messages should only be sent to the sensor during the configuration sequence.

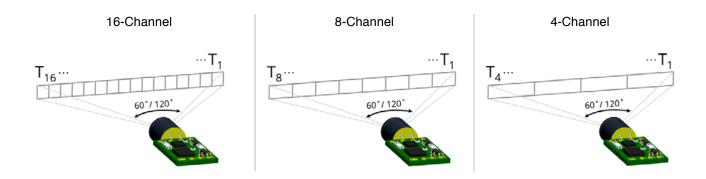

DO NOT continuously send CAN messages to the sensor.

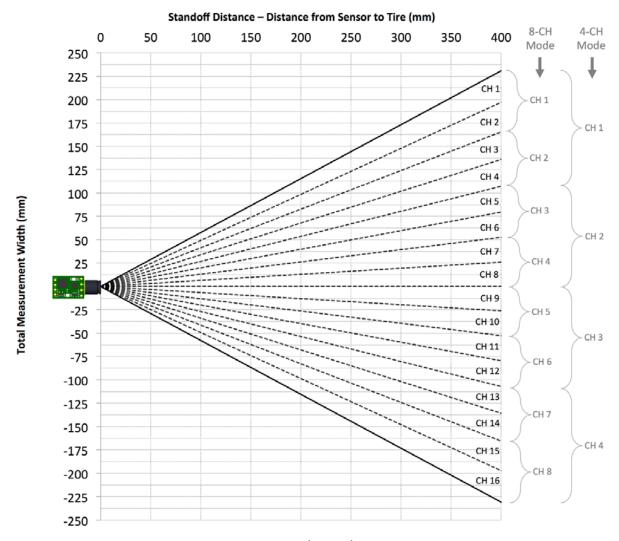
DIMENSIONS:

60° Field-of-View (FOV), IRTS-60-PCB-V2

32.15mm 21mm 2.9mm 9.3mm

120° Field-of-View (FOV), IRTS-120-PCB-V2

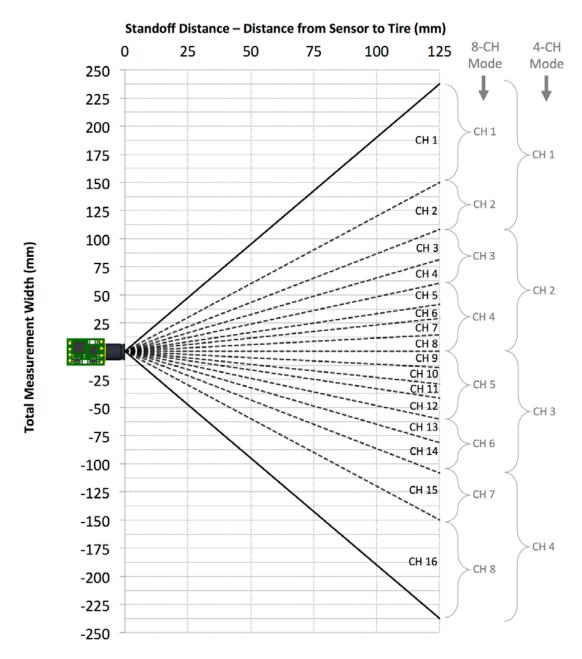




INFRARED TEMPERATURE SENSOR IRTS-PCB-V2

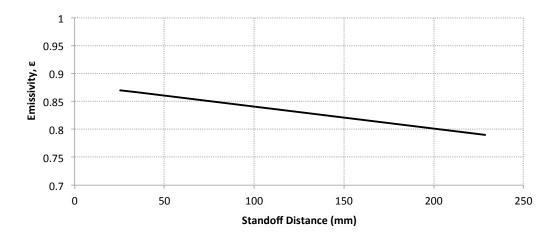
Field-of-View (FOV):

60° Field-of-View, IRTS-60-PCB-V2:


(Approximate. Angle offset (z-axis rotation) between -5° and +5°, mounts should allow adjustment accordingly)

INFRARED TEMPERATURE SENSOR IRTS-PCB-V2

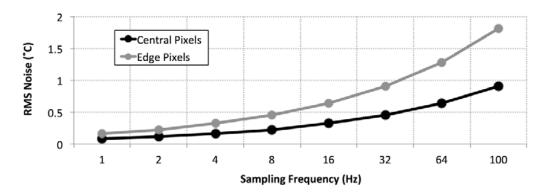
120° Field-of-View, IRTS-120-PCB-V2:


(Approximate. Angle offset (z-axis rotation) between -5° and +5°, mounts should allow adjustment accordingly)

INFRARED TEMPERATURE SENSOR IRTS-PCB-V2

ADDITIONAL INFORMATION:

- With the sensor enclosed (aluminum is preferable), encapsulated, and installed, place an object with a uniform temperature such as a tire in front of the sensor and adjust the offset of each temperature channel until each channel matches the known temperature of the object. The test object should have an elevated (> 50°C) and uniform temperature. This calibration procedure will offset any *subtle* temperature non-uniformities caused by the sensor's unique packaging and will allow the sensor to achieve the stated ±1.0°C accuracy.
- Stated accuracy is under isothermal package conditions; for utmost accuracy, avoid abrupt temperature transients and gradients across the sensor's package.
- Point the sensor in the downstream direction (facing front of tire) to avoid contamination, pitting, and/or destruction of the sensor's lens from debris. Protective windows are available upon request.
- The *effective* emissivity of most tires ranges from approximately 0.75 to 0.90 in the 8 to 14 μ m spectrum.
 - o Generally, the emissivity should be lowered as the standoff distance (distance from tire to sensor) increases; this is particularly important with the 60° FOV sensor due to the larger standoff distances required. The suggested emissivity vs. standoff distance is shown in the graph below:


o Lowering the emissivity increases the measured object temperature and vice versa

INFRARED TEMPERATURE SENSOR IRTS-PCB-V2

- Noise Equivalent Temperature Difference (NETD) increases with increasing sampling frequency:
 - Provided that tire surface temperature is highly transient, it is usually advantageous to use a higher sampling frequency at the cost of increased noise. A sampling frequency of 16 or 32 Hz is recommended for most applications.

